Zong B, Song Q, Min M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//International conference on learning representations. 2018.
对多维或高维数据的无监督异常检测在基础机器学习研究和工业应用中都具有重要意义,其中密度估计是一个这些算法的核心。虽然以往基于降维和密度估计的方法取得了富有成效的进展,但主要受限于优化不一致的解耦模型的学习 的目标使得其不能在低维空间中保存关键信息。本文提出了一种用于无监督异常检测的深度自编码高斯混合模型(DAGMM)。该模型利用一个深度自动编码器来生成一个低维表示和每个输入数据点的重构误差,进一步将这些特殊输入高斯混合模型(GMM)。DAGMM没有使用解耦的两阶段训练和标准的期望最大化(EM)算法,而是联合优化了深度自动编码器和混合模型模拟器的参数,利用一个单独的估计网络以端到端的方式来促进混合模型的参数学习。这种联合优化很好地平衡了自编码重构、潜在表示的密度估计和正则化,有助于自动编码器摆脱较低吸引力的局部选择,进一步减少了重建误差,避免了预训练的需要。
深度自编码高斯混合模型(DAGMM)主要由压缩网络和估计网络两大部分组成。DAGMM的工作原理如下: (1)压缩网络通过深度自动编码器对输入样本进行降维,从降维的空间和重构误差特征中准备它们的低维表示,并将表示输入后续估计网络;(2)估计网络利用输入,在高斯混合模型(GMM)的框架内预测它们的似然/能量。
下面分开介绍两个模型主体以及模型的联合优化目标。
这里值的注意的是,一般情况下,我们都是采用重构与输入之间的误差用于网络的参数优化。这里作者在保留原始MSE损失之外,将多个距离指标得到的重构误差作为特征用于后续GMM模型的参数估计过程中。在之后的实验中可以验证一下是不是对所有的后续估计都有效。
论文中作者还通过理论证明,可以将DAGMM的隶属度预测任务引入到神经变分推理的框架中。具体细节请移步原文。